

Tetrahedron Letters 41 (2000) 7367-7371

TETRAHEDRON LETTERS

Total synthesis of (–)-pateamine, a novel polyene bis-macrolide with immunosuppressive activity from the sponge *Mycale* sp.

Modesto J. Remuiñán and Gerald Pattenden*

School of Chemistry, The University of Nottingham, Nottingham NG7 2RD, UK

Received 5 June 2000; accepted 20 July 2000

Abstract

A concise and convergent synthesis of the polyene thiazole-containing 19-membered bis-lactone (–)-pateamine 1 is described. The synthesis features both the intra- and intermolecular Stille sp^2-sp^2 coupling reactions to elaborate the *E*,*Z*-diene macrolide core and the side-chain all-*E* polyene portion of the natural product, and highlights the scope for enantiopure sulfinimine intermediates in the synthesis of chiral β -amino ester moieties in complex structures. © 2000 Elsevier Science Ltd. All rights reserved.

Pateamine 1 is a unique thiazole-containing 19-membered-bis-lactone isolated from the marine sponge Mycale sp.¹ The compound exhibits potent immunosuppressant properties with low cytotoxicity.^{1,2} The bis-lactone core in pateamine accommodates four asymmetric centres together with an E,Z-1,3-diene unit, and is substituted by an unusual all-E trienamine residue. Degradative studies, in tandem with synthetic work and NMR measurements, have led to the stereochemical assignment shown in structure 1, to naturally occurring (–)-pateamine,³ and this assignment has been vindicated by total synthesis.⁴ In an earlier communication we described a

^{*} Corresponding author.

^{0040-4039/00/\$ -} see front matter \odot 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01241-7

concise approach to the 19-membered bis-lactone core in pateamine.⁵ In this Letter we summarise the extension to this study, culminating in a total synthesis of this intriguing secondary metabolite.

The synthetic approach we adopted to pateamine 1 was based on: (i) elaboration of the thiazole propanal 2 from chiral pool starting materials; (ii) conversion of the propanal 2 to the β -amino ester 5 via the corresponding enantiopure sulfinimine 3 and reaction with the enolate derived from the acetate 4; (iii) elaboration of 5 to 6 followed by an intramolecular Stille coupling reaction leading to the bis-lactone core 7; and finally (iv) homologation of the side chain in 7 to the vinyl iodide 8 and an intermolecular Stille reaction with the aminostannane 9 (Scheme 1).

Thus, starting with commercially available dimethyl L-malate 10 and (S)-methyl 3-hydroxy-2methylpropionate 12, the thioamide 11 and the α -bromoketone 13, respectively were first elaborated using well established methods. A modified Hantzsch thiazole synthesis,⁶ between 11 and 13, next produced the substituted thiazole 14. Cleavage of the TBS protecting group in 14 followed by a one carbon homologation from the resulting alcohol, via the nitrile 15a, then led to the thiazole propanal intermediate 15b (\equiv 2) (Scheme 2). Using the procedure described by Davis et al.^{7a} treatment of the aldehyde 2 with (*R*)-*p*-toluenesulfinamide in the presence of titanium ethoxide at 50°C next led to the sulfinimine 3 (64%) which, on reaction with the enolate derived from the chiral acetate 4⁸ at -78°C, gave the substituted β-amino ester 16a with 85% diastereoselectivity in 63% yield.^{7b} Cleavage of the *p*-toluenesulfinyl group in 16a, by treatment with TFAmethanol, then provided the free β-amino ester 16b whose configuration was established unambiguously using the NMR spectroscopic procedure reported by Riguera et al.⁹ The amine 16b was next protected as the corresponding TcBoc carbamate **16c** prior to cleavage of the PMB ether, leading to the carbinol **17**. Esterification of Z-3-tri-*n*-butylstannylpropenoic acid¹⁰ with the resulting secondary alcohol **17** under Yamaguchi conditions¹¹ then led to the key intermediate **6**. When the stannane-iodide **6** was treated with Ph₃As-Pd(0) dibenzylideneacetone in DMF at $55^{\circ}C^{12}$ for 1 h, it underwent smooth sp^2-sp^2 coupling with complete preservation of the E/Zstereochemistry in the starting material leading to the 19-membered bis-lactone diene core **7** in pateamine in 65% yield (Scheme 2).

Scheme 2. **Reagents and conditions:** (i) BH₃·SMe₂, NaBH₄, THF, 92%; (ii) TPSCl, Et₃N, DMAP, DCM, rt, 12 h, 93%; (iii) PMBoc(=NH)CCl₃, CSA, DCM, rt, 3 days, 76%; (iv) LiOH, H₂O/THF, rt, 12 h, 90%; (v) ClCO₂Et, Et₃N, NH₄OH, rt, 30 min, 93%; (vi) Lawesson's reagent, THF, rt, 30 min, 99%; (vii) TBSCl, Et₃N, DMAP, DCM, rt, 24 h, 95%; (viii) HNMeOMe·HCl, AlMe₃, DCM, Δ , 5 h, 61%; (ix) 1.5 equiv. MeMgBr, THF, 0°C, 1 h, 94%; (x) LiHMDS, -78°C, TMSCl, Br₂, 86%; (xi) 2,6-lutidene, DCM, rt, 12 h; (xii) (CF₃CO)₂O, Py, DCM, -30°C, 30 min, 64% (two steps); (xiii) AcOH/THF/H₂O, rt, 12 h, 92%; (xiv) MsCl, Et₃N, DCM, 0°C, 1 h; (xv) NaCN, DMSO, 60°C, 6 h, 77% (two steps); (xvi) DIBAL, toluene, 0°C, 2 h, 85%; (xvii) (*R*)-tolylsulfinamide, Ti(OEt)₄, DCM, 50°C, 4 h, 64%; (xviii) LiHMDS, THF, -78°C, 10 min, 63%; (xix) TFA, MeOH, rt, 4 h, 95%; (xx) TcBocCl, Py, DCM, 0°C, 2 h, 89%; (xxi) DDQ, DCM, H₂O, rt, 2 h, 87%; (xxii) (*Z*)-3-tributylstannylpropenoic acid, 2,4,6-trichlorobenzoyl chloride, Et₃N, DMAP, toluene, -30°C, 1 h, 67%; (xxiii) Pd(dba)₂, Ph₃As, DMF, 55°C, 1 h, 65%

A number of procedures to install the all-*E*-trienamine side chain in pateamine, starting from the substituted bis-lactone 7, were examined. Ultimately, we used a route which proceeded via the vinyl iodide **8** and featured an intermolecular Stille coupling with the vinylstannane **9**.

Thus, deprotection of **7** followed by oxidation of the resulting alcohol using the pyridine-buffered Dess–Martin procedure first led to the aldehyde **18** (Scheme 3). Homologation of **18** using 2-(triphenylphosphoranylidene)propionaldehyde next gave the E- α , β -unsaturated aldehyde **19** exclusively, which was then converted into the all-*E*-iodotriene **8** using the procedure of Takai.¹³ Treatment of a mixture of **8** and **9** with Pd(CH₃CN)₂Cl₂¹⁴ in DMF at room temperature for 6 h resulted in their smooth coupling¹⁵ and the formation of TcBoc pateamine **20**, $[\alpha]^{24}_{D}$ –235.0 (c 0.1, CHCl₃), which had identical spectroscopic properties to those of the same compound prepared by a different route by Romo et al. [Lit.⁴ $[\alpha]^{26}_{D}$ –243.5 (c 0.46, CHCl₃)]. Finally, deprotection of **20**, following the procedure of Ciufolini et al.¹⁶ using a Cd/Pb couple with NH₄OAc, gave (–)-pateamine **1** showing NMR spectroscopic and chiroptical data which were identical to those described for the natural product.

Scheme 3. **Reagents and conditions:** (i) TBAF, AcOH, THF, rt, 24 h, 78%; (ii) Dess–Martin, Py, DCM, 2 h, rt, 70%; (iii) 2-(triphenylphosphoralidene)propionaldehyde, 3 h, Δ , 73%; (iv) CrCl₂, CHI₃, THF, 1.5 h, rt, 68%; (v) Pd(CH₃CN)₂Cl₂, DMF, rt, 6 h, 36%; (vi) 10% Cd–Pb, 1 M NH₄OAc, THF, rt, 5 h, 73%

Acknowledgements

We thank the EU for a Marie Curie Fellowship (to M.J.R.) and Pfizer Ltd (purchase of consumables) for their support of this work.

References

- 1. Northcote, P. T.; Blunt, J. W.; Munro, M. H. G. Tetrahedron Lett. 1991, 32, 6411.
- 2. See also references cited in Ref. 4 below.
- 3. Rzasa, R. M.; Romo, D.; Stirling, D. J.; Blunt, J. W.; Munro, M. H. G. Tetrahedron Lett. 1995, 36, 5307.
- Romo, D.; Rzasa, R. M.; Shea, H. A.; Park, K.; Langenhan, J. M.; Sun, L.; Akhiezer, A.; Liu, J. O. J. Am. Chem. Soc. 1998, 120, 12237.
- 5. Critcher, D. J.; Pattenden, G. Tetrahedron Lett. 1996, 37, 9107.

- (a) Brendenkamp, M. W.; Holzapfel, C. W.; van Zyl, W. J. Synth. Commun. 1992, 22, 3029. (b) Aguilar, E.; Meyers, A. I. Tetrahedron Lett. 1994, 35, 2473.
- 7. (a) Davis, F. A.; Zhang, Y.; Andemichael, Y.; Fang, T.; Fanelli, D. L.; Zhang, H. J. Org. Chem. 1999, 64, 1403.
 (b) For a review of the chemistry of sulfinimines, see: Davis, F. A.; Zhou, P.; Chen, B. C. Chem. Soc. Rev. 1998, 27, 13.
- 8. The acetate 4 was prepared from the corresponding alcohol which has been described previously (see Ref. 5).
- 9. López, B.; Quiñoá, E.; Riguera, R. J. Am. Chem. Soc. 1999, 121, 9724.
- Ethyl Z-3-(tributylstannyl)propenoate was prepared from ethyl propiolate, see: Stille, J. K.; Groh, B. L. J. Am. Chem. Soc. 1987, 109, 813. Saponification of the ethyl ester with lithium hydroxide then gave Z-3-(tributylstannyl)propenoic acid.
- 11. Inanaga, J.; Hirata, K.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
- 12. Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585.
- 13. Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408.
- (a) Rudisill, D. E.; Castonguay, L. A.; Stille, J. K. *Tetrahedron Lett.* 1988, 29, 1509. (b) Smith III, A. B.; Maleczka, R. E.; Leazer Jr., J. L.; Leahy, J. W.; McCauley, J. A.; Condon, S. M. *Tetrahedron Lett.* 1994, 35, 4911.
- 15. A similar Stille coupling reaction was used by Romo et al. in their synthesis of pateamine (see Ref. 4).
- 16. Dong, Q.; Anderson, C. E.; Ciufolini, M. A. *Tetrahedron Lett.* **1995**, *36*, 5681. This method was also used by Romo et al. in their synthesis of pateamine (see Ref. 4).